İstanbul Galata Üniversitesi Kurumsal Akademik Arşivi

DSpace@Galata, İstanbul Galata Üniversitesi tarafından doğrudan ve dolaylı olarak yayınlanan; kitap, makale, tez, bildiri, rapor, araştırma verisi gibi tüm akademik kaynakları uluslararası standartlarda dijital ortamda depolar, Üniversitenin akademik performansını izlemeye aracılık eder, kaynakları uzun süreli saklar ve telif haklarına uygun olarak Açık Erişime sunar.




 

Güncel Gönderiler

Öğe
Alglerin Sürdürülebilirlik ve Besin Zenginleştirmedeki Yeri
(2025) Anık, Sema; Kestane, Vahibe Uluçay
ÖZET Son yıllarda dünyada gıda üretiminde üst limitlere ulaşılmasına rağmen her 9 kişiden biri yetersiz beslenme ile karşı karşıyadır. İklim değişimi ve nüfus artışı ile durumun daha da kötüleşmesi sürdürülebilir alternatif enerji ve protein kaynaklarına yönelmeyi ihtiyaç haline getirmiştir. Sürdürülebilirlik kavramı, her zaman var olma, geleceğe kalabilme, varlığını devam ettirme olarak açıklanmaktadır. Bir beslenme stratejisi olarak düşünüldüğünde ise düşük çevresel etkiye sahip, protein seçeneklerinin var olduğu yeni alternatif kaynakların arayışı olarak gündeme gelmiştir. Literatürde alternatif protein kaynakları arasında yenilebilir böcekler, yenilebilir alg türleri ve biyoteknolojik yöntemler kullanılarak üretilen sentetik etler bulunmaktadır. Alglerin sucul ortamda doğal olarak yetişebilmeleri, çok uzun zaman güvenli olarak tüketilmeleri, makro ve mikro besin ögesi çeşitliliği ile biyoaktif madde yoğunluğunun yüksek olması, genetik olarak modifiye edilebilmeleri ve ihtiyaç duyulan ögelere göre seçilip çoğaltılabilmeleri gibi nedenlerden dolayı geleceğe yönelik doğal besin alternatifleri arasında yer almaktadır. Bu nedenle günümüzde süt ürünleri, makarna, ekmek vb. tahıl ürünleri gibi insan beslenmesinde sıklıkla tüketilen besinlere çeşitli mikroalg türleri ilave edilerek bu besinlerin makro ve mikro besin ögeleri yönünden zenginleştirilmesi sağlanmaktadır. Mikroalgler sağlıklı bir diyet için yeterince araştırılmamış doğal bir kaynaktır. Bu nedenle yüksek değerli ürünler elde edebilmek için yeni mikroalg suşlarının tanımlanması ve özelliklerinin belirlenmesine ihtiyaç duyulmaktadır. Bu derlemenin amacı, artan dünya nüfusunun gıda ihtiyacını karşılamak için sürdürülebilir ve yenilikçi protein kaynaklarına olan gereksinimi açıklamak ve alglerin sürdürülebilirlik ve besin zenginleştirmede alternatif besin kaynağı olarak kullanılmasının önemini vurgulamaktır.
Öğe
The Mediating Role of Climate Change Mitigation Behaviors in the Effect of Environmental Values on Green Purchasing Behavior within the Framework of Sustainable Development
(Walter de Gruyter GmbH, 2025) Yilmaz, Gonca
Global environmental challenges, including the depletion of natural resources, pollution, and population growth, have significantly impacted modern lifestyles. The environmental and socioeconomic dimensions of this reality are represented by climate change, one of the major threats facing the planet. People's environmental values and the green behaviors they exhibit based on these values are crucial in mitigating significant environmental problems, such as climate change. In this context, raising environmental awareness and motivating individuals to contribute to sustainable development and the circular economy particularly environmental protection can serve as an effective starting point. In line with this idea, data were collected from 236 participants in Istanbul in 2024 using the convenience sampling method. The data collected through the survey technique in the study were analyzed using the SPSS program and PROCESS, a macro developed for SPSS. In addition, confirmatory factor analysis and path analysis were performed with the Python programming language, and fit index was also presented. The research findings reveal a significant relationship between environmental values and green purchasing behavior. The mediating role of climate change mitigation behavior was also found.
Öğe
Deep Learning in neuroimaging for neurodegenerative diseases: State-of-the art, Challenges, and Opportunities
(Elsevier B.V., 2025) Akan, Taymaz; Alp, Sait; Ledbetter, Christina Raye; Tafti, Ahmad P.; Arevalo, Octavio; Bhuiyan, Mohammad Alfrad Nobel
Neuroimaging is commonly used to diagnose neurodegenerative diseases (NDDs), providing crucial insights into brain changes before clinical symptoms manifest. Deep learning (DL) for neuroimaging can improve early diagnosis and disease monitoring. Clinical implementation of DL faces challenges in accurately representing realworld data. Recent models, particularly those focused on diagnostic categorization, have achieved high accuracy, but their applicability to patients is limited. Conflicting inferences have been reported, with findings from small cohorts generalizing conclusions without considering inter-scanner, intra- and inter-site variations. A theoretically feasible method involves gathering a comprehensive dataset that encompasses all patient demographics, but this presents practical challenges including harmonization, data incompleteness, class imbalance, and substantial costs. Existing research has also mostly focused on common NDDs like Alzheimer's Disease (AD) and Parkinson's Disease (PD). This contribution expands the literature by looking at a wider range of NDDs, exploring the latest advancements in applying deep learning algorithms to neuroimaging analysis for the diagnosis and monitoring of NDDs, including AD, Frontotemporal Dementia (FTD), Lewy Body Dementia, PD, Huntington's Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis. We emphasize how these approaches are handling spatial/temporal information available in brain volume imaging data. We conclude by discussing the challenges associated with the use of voxel-based, patch-based, ROI-based, and slice-based approaches in brain volume imaging. These challenges are further compounded by issues such as inter-site and inter-scanner variability, class imbalances in medical datasets, and the scarcity of accurately annotated data, all of which impact the performance and generalizability of deep learning models.
Öğe
Adapting the metaverse perception scale for Iranian nursing students: translation and psychometric assessment
(Springer, 2025) Aghabarary, Maryam; Yıldırım, Tuğba Öztürk; Norouzinia, Roohangiz
The integration of metaverse technologies into healthcare education is expand ing globally. However, there is a lack of culturally validated instruments to assess students’ perceptions within the Iranian context. This study aimed to evaluate the psychometric properties of the Persian version of the Metaverse Perception Scale among Iranian nursing students. A cross-sectional psychometric study was con ducted with 436 nursing students. The translated scale underwent Exploratory Fac tor Analysis (EFA) and Confirmatory Factor Analysis (CFA). Internal consistency was assessed using Cronbach’s alpha. Convergent and discriminant validity were evaluated through Composite Reliability (CR), Average Variance Extracted (AVE), inter-construct correlations, √AVE, MSV and ASV. Factor analysis revealed a four factor structure—Education, Technology, Lifestyle, and Challenges—which ex plained 67.08% of the total variance. CFA results indicated that the refined 20-item version of the questionnaire had a good overall model fit (χ²/df=1.647; CFI=0.958; RMSEA=0.054). All CR values and AVE values were above 0.70 and 0.50, re spectively, supporting convergent validity. For all factors, √AVE values exceeded inter-construct correlations, and both MSV and ASV were lower than AVE, sup porting discriminant validity. The scale demonstrated strong internal consistency (Cronbach’s alpha=0.917−0.822). The Persian version of the Metaverse Perception Scale (P-MPS) is a valid and reliable scale for assessing nursing students’ percep tions of metaverse technologies in educational settings. This scale shows strong potential for application in both researc
Öğe
Smart Contracts, Blockchain, and Health Policies: Past, Present, and Future
(Multidisciplinary Digital Publishing Institute (MDPI), 2025) Kurt, Kenan Kaan; Timurtaş, Meral; Ozaydin, Fatih; Türkeli, Serkan
The integration of blockchain technology into healthcare systems has emerged as a technical solution for enhancing data security, protecting privacy, and improving interoperability. Blockchain-based smart contracts offer reliability, transparency, and efficiency in healthcare services, making them a focal point of many studies. However, challenges such as scalability, regulatory compliance, and interoperability continue to limit their widespread adoption. This study conducts a comprehensive literature review to assess blockchain-driven health data management, focusing on the classification of blockchain-based smart contracts in health policy and the health protocols and standards applicable to blockchain-based smart contracts. This review includes 80 core studies published between 2019 and 2025, identified through searches in PubMed, Scopus, and Web of Science using the PRISMA method. Risk of bias and methodological quality were assessed using the Joanna Briggs Institute tool. The findings highlight the potential of blockchain-enabled smart contracts in health policy management, emphasizing their advantages, limitations, and implementation challenges. Additionally, the research underscores their transformative impact on digital health policies in ensuring data integrity, enhancing patient autonomy, and fostering a more resilient healthcare ecosystem. Recent advancements in quantum technologies are also considered as they present both novel opportunities and emerging threats to the future security and design of healthcare blockchain systems.